Решить задачу
Введите текст одной задачи по математике (без ошибок, сокращений и с сохранением всех знаков препинания, как в учебнике) и нажмите кнопку “Решить задачу”. Или выберите задачу из учебника.
Можно задать текст голосом по одному предложению, нажимая на
Решение
Ответ
Конечное расстояние: 360 км
Что нужно знать
- Формула движения: s = v ⋅ t (расстояние равно скорость умножить на время). Обычно расстояние обозначают буквой s от space, скорость буквой v от velocity, время буквой t от time.
- Скорость измеряется в км/ч (километры в час), м/сек (метры в секунду) или других величинах. Для вычисления уравнений все величины должны иметь согласуемые единицы измерения. Например, путь в км, время в часах и скорость в км/ч. Если это не так по условию, то нужно выбрать какую-нибудь одну единицу для пути и одну для времени (назовём их базовыми единицами измерения) и привести к этим измерениям все значения из условия задачи. А для результата, если он не соответствует базовым величинам, то нужно из этих базовых величин привести значения к требуемым.
Вариант решения №1 (Универсальный)
Способ решения
Универсальный способ решения: составить систему уравнений, подставить известные значения и вычислить неизвестные. Раз у нас 2 объекта, то 2 уравнения описывают движение этих объектов, а остальные уравнения берутся из условий задачи.
Базовыми единицами измерения возьмём км для пути, ч для времени и км/ч для скорости.
Итак, у нас в формулах есть 7 величин, из которых 3 известные (kv=2, t=3, vав=40) и 4 неизвестные (d, sав, sмот, vмот), которые предстоит найти для получения результата.
Для успешного решения неизвестных должно быть столько же или меньше, чем уравнений. В нашем случае одинаково - 4, то есть скорее всего решение найдётся.
- sав = vав ⋅ t, формула движения, где sав - длина пути автобуса, vав - скорость автобуса, t - время движения каждого объекта.
- sмот = vмот ⋅ t, формула движения, где sмот - длина пути мотоцикла, vмот - скорость мотоцикла, t - время движения каждого объекта.
- d = sав + sмот , конечное расстояние.
- vмот = vав ⋅ kv , условие, что скорость мотоцикла (vмот) в 2 раза (kv) больше, чем скорость автобуса (vав).
Базовыми единицами измерения возьмём км для пути, ч для времени и км/ч для скорости.
Итак, у нас в формулах есть 7 величин, из которых 3 известные (kv=2, t=3, vав=40) и 4 неизвестные (d, sав, sмот, vмот), которые предстоит найти для получения результата.
Для успешного решения неизвестных должно быть столько же или меньше, чем уравнений. В нашем случае одинаково - 4, то есть скорее всего решение найдётся.
Выделение данных
Из одного города одновременно в противоположных направлениях выехали автобус и мотоцикл. Скорость автобуса 40 км/час, vав = 40 км/ч мотоцикла - в два раза больше. kv = 2 раза, vмот = vав ⋅ kv Какое расстояние d = ? км будет между ними через 3 часа t = 3 ч?
Система уравнений
- sав = 40 ⋅ 3
- sмот = vмот ⋅ 3
- d = sав + sмот
- vмот = 40 ⋅ 2
Решение системы уравнений
Уравнения решаются путём простых и известных вам операций. Нужно, чтобы во всех уравнениях слева оказались неизвестные (корни уравнений), а справа от них - выражения без неизвестных (числа или переменные). То есть все уравнения приняли бы вид x = число. Не надо сразу пытаться решить всё за один раз, а лучше двигаться постепенно, выполняя простые операции и каждый раз улучшая систему в целом, приближаясь к конечному виду. Например, вот как их решает робот (возможно, у вас получится решить короче):
Уравнение 1 | Уравнение 2 | Уравнение 3 | Уравнение 4 | Комментарий | |
---|---|---|---|---|---|
0 шаг | sав = 40 ⋅ 3 | sмот = vмот ⋅ 3 | d = sав + sмот | vмот = 40 ⋅ 2 | Исходная система уравнений |
1 шаг | sав = 120 | sмот = vмот ⋅ 3 | d = sав + sмот | vмот = 80 | |
2 шаг | sав = 120 | sмот = vмот ⋅ 3 | d = 120 + sмот | vмот = 80 | Заменили sав на 120. |
3 шаг | sав = 120 | sмот = 3 ⋅ 80 | d = 120 + sмот | vмот = 80 | Заменили vмот на 80. |
4 шаг | sав = 120 | sмот = 240 | d = 120 + sмот | vмот = 80 | |
5 шаг | sав = 120 км | sмот = 240 км | d = 120 + 240 км | vмот = 80 км/ч | Заменили sмот на 240. |
6 шаг | sав = 120 км | sмот = 240 км | d = 360 км | vмот = 80 км/ч | Готово! |
d = 360 км
Вариант решения №2 (Школьный)
Способ решения
Для двух объектов, движущихся в разных направлениях (друг к другу или друг от друга) скорости складываются, будто бы один объект неподвижен, а другой двигается с суммарной скоростью. То есть задача описывается уравнением движения одного объекта (расстояние равно скорость умножить на время):
d = (vав + (vав ⋅ kv)) ⋅ t
Ещё нужно учесть, что скорость мотоцикла в 2 раза больше, чем скорость автобуса.
d = (vав + (vав ⋅ kv)) ⋅ t
Ещё нужно учесть, что скорость мотоцикла в 2 раза больше, чем скорость автобуса.
Система уравнений
- d = 40 ⋅ 3 + 40 ⋅ 2 ⋅ 3
Решение системы уравнений
Уравнение 1 | Комментарий | |
---|---|---|
0 шаг | d = 40 ⋅ 3 + 40 ⋅ 2 ⋅ 3 | Исходная система уравнений |
1 шаг | d = 120 + 240 | Готово! |
2 шаг | d = 360 | Готово! |
d = 360 км
Если Вы считаете, что задача решена роботом неправильно, то нажмите кнопку, чтобы разработчики смогли объяснить роботу правильное решение
Сгенерировать уникальные задачи с ответами на основе текущей задачи.