Решить задачу
Введите текст одной задачи по математике (без ошибок, сокращений и с сохранением всех знаков препинания, как в учебнике) и нажмите кнопку “Решить задачу”. Или выберите задачу из учебника.
Можно задать текст голосом по одному предложению, нажимая на
Решение
Ответ
На сколько скорость прямого пути больше, чем скорость обратного пути: на 12 км/ч
Что нужно знать
- Формула движения: s = v ⋅ t (расстояние равно скорость умножить на время). Обычно расстояние обозначают буквой s от space, скорость буквой v от velocity, время буквой t от time.
- Скорость измеряется в км/ч (километры в час), м/сек (метры в секунду) или других величинах. Для вычисления уравнений все величины должны иметь согласуемые единицы измерения. Например, путь в км, время в часах и скорость в км/ч. Если это не так по условию, то нужно выбрать какую-нибудь одну единицу для пути и одну для времени (назовём их базовыми единицами измерения) и привести к этим измерениям все значения из условия задачи. А для результата, если он не соответствует базовым величинам, то нужно из этих базовых величин привести значения к требуемым.
Вариант решения (Универсальный)
Способ решения
⚠ Будем считать, что это не один объект двигается на 2-х отрезках, а 2 независимые объекта на своих отрезках каждый.
Универсальный способ решения: составить систему уравнений, подставить известные значения и вычислить неизвестные. Раз у нас 2 объекта, то 2 уравнения описывают движение этих объектов, а остальные уравнения берутся из условий задачи.
Базовыми единицами измерения возьмём км для пути, ч для времени и км/ч для скорости.
Итак, у нас в формулах есть 6 величин, из которых 3 известные (tоб=8, tпр=6, vпр=48) и 3 неизвестные (?, s, vоб), которые предстоит найти для получения результата.
Для успешного решения неизвестных должно быть столько же или меньше, чем уравнений. В нашем случае одинаково - 3, то есть скорее всего решение найдётся.
Универсальный способ решения: составить систему уравнений, подставить известные значения и вычислить неизвестные. Раз у нас 2 объекта, то 2 уравнения описывают движение этих объектов, а остальные уравнения берутся из условий задачи.
- s = vпр ⋅ tпр, формула движения, где s - длина пути каждого объекта, vпр - скорость прямого пути, tпр - время движения прямого пути.
- s = vоб ⋅ tоб, формула движения, где s - длина пути каждого объекта, vоб - скорость обратного пути, tоб - время движения обратного пути.
- ? = vпр – vоб , условие, что на сколько скорость прямого пути больше, чем скорость обратного пути (?) на 48 км/ч (vпр) меньше, чем скорость обратного пути (vоб).
Базовыми единицами измерения возьмём км для пути, ч для времени и км/ч для скорости.
Итак, у нас в формулах есть 6 величин, из которых 3 известные (tоб=8, tпр=6, vпр=48) и 3 неизвестные (?, s, vоб), которые предстоит найти для получения результата.
Для успешного решения неизвестных должно быть столько же или меньше, чем уравнений. В нашем случае одинаково - 3, то есть скорее всего решение найдётся.
Выделение данных
Теплоход шел по течению 6 часов tпр = 6 ч со скоростью 48 км/час. vпр = 48 км/ч Обратный путь он прошел за 8 часов. tоб = 8 ч На сколько изменилась скорость ? = ? км/ч, ? = vпр – vоб теплохода?
Система уравнений
- s = 48 ⋅ 6
- s = vоб ⋅ 8
- ? = 48 – vоб
Решение системы уравнений
Уравнения решаются путём простых и известных вам операций. Нужно, чтобы во всех уравнениях слева оказались неизвестные (корни уравнений), а справа от них - выражения без неизвестных (числа или переменные). То есть все уравнения приняли бы вид x = число. Не надо сразу пытаться решить всё за один раз, а лучше двигаться постепенно, выполняя простые операции и каждый раз улучшая систему в целом, приближаясь к конечному виду. Например, вот как их решает робот (возможно, у вас получится решить короче):
Уравнение 1 | Уравнение 2 | Уравнение 3 | Комментарий | |
---|---|---|---|---|
0 шаг | s = 48 ⋅ 6 | s = vоб ⋅ 8 | ? = 48 – vоб | Исходная система уравнений |
1 шаг | s = 288 | s = vоб ⋅ 8 | ? = 48 – vоб | |
2 шаг | s = 288 | 288 = vоб ⋅ 8 | ? = 48 – vоб | Заменили s на 288. |
3 шаг | s = 288 | 288/8 = vоб | ? = 48 – vоб | Разделили правую и левую части на 8. |
4 шаг | s = 288 | vоб = 36 | ? = 48 – vоб | Переставили левую и правую части. |
5 шаг | s = 288 км | vоб = 36 км/ч | ? = 48 – 36 км/ч | Заменили vоб на 36. |
6 шаг | s = 288 км | vоб = 36 км/ч | ? = 12 км/ч | Готово! |
? = 12 км/ч
Если Вы считаете, что задача решена роботом неправильно, то нажмите кнопку, чтобы разработчики смогли объяснить роботу правильное решение
Сгенерировать уникальные задачи с ответами на основе текущей задачи.